我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:一品彩票 > 反例 >

数学中的反证法在什么问题中适用

归档日期:07-09       文本归类:反例      文章编辑:爱尚语录

  在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法.用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”.

  例1 证明当p, q均为奇数时,曲线q与x轴的交点横坐标为无理数.(2009清华大学夏令营选拔考试)

  要说明二次方程无有理解,目前倒没有什么直接的判断方法,因此采用反证法.

  在简单整数理论中,反证法是常用的方法.主要适用的情况就是我们正面不能处理的时候,来假设结论不成立,利用假设作为条件,通过推演出矛盾,最终否定假设.在简单整数理论中,很多时候推出的矛盾是奇偶矛盾,比如说最经典的反证法证明2是无理数.

  例2 已知1与90之间的19个(不同的)正整数,两两的差中是否一定有三个相等?(1990年匈牙利数学竞赛题)

  这类问题要从正面来处理,非常困难.可考虑从反面出发:没有三个相等的情况,最多两个相等,从而我们能得到怎样的信息呢?如果按大小顺序排列的线个差,这些差至多两个相等,也就形成了一些重叠,从而至少有9个不同的数,于是设法找到存在性或者矛盾的方面.

  虽然从形式上来看没有用到“抽屉原理”,但用到了抽屉原理的思想,即18个数放到9个盒子中,最平均的情况就是每个盒子两个,否则就出现我们要证明的结果:三个数在一个盒子里,即存在三个差相等.由此,我们在讨论问题的过程中,不能仅仅盯着定理和原理能否使用,而是应该理解和挖掘定理和性质本身的数学思想,从而在解决问题的过程中灵活运用.

  正难则反,是数学解题一个规律.正面解决困难的时候,我们有必要调整方向,从问题的反面入手,相当于增加了一个条件,在本题中d≥3m+1比d=3m要收缩的多,数列增加就慢了,所以原来d=3m时刚好是满足的,现在就要向后推移了,自然就应当存在矛盾,这时直觉的定性分析也帮上了忙.

  例4 证明如果在取三个不同的整数值时,变量x的整系数多项式的值的绝对值都是1,那么这个多项式没有整数根.(2005年江苏竞赛初赛题)

  (2) 研究含有否定词“不存在”,“没有”,“不相等”,“不可能”等有关命题时,我们常用的策略是从反面考虑问题,即正难则反.

  利用反证法,使问题的解决直观明了.同时,本题的结论对一般的连续函数f(x)也成立,其运用的处理方法,是可以值得借鉴.

  本题直接证明十分困难,于是我们想到正难则反,利用反证法,结合函数构造,来完成证明.

  数学竞赛考试是智慧的较量,尤其是面对困难如何摆脱的智慧.现在的数学竞赛、自主招生考试、高考必然出现“生题”“新题”,对此考生可能一时无法把握,使思考困顿,解题停顿.这些战略高地以单一的方式一味死攻并非上策,要学会从侧翼进攻,要有“战略迂回”的意识从侧面或反面的某个点突破,往往会出奇制胜.本题思维要求高,是一道难度较大的试题.

  牛顿曾经说过:“反证法是数学家最精当的武器之一”.一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显、具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆.

  所以不存在一条直线; 分析:注意到a, b, c, d是多项式f(x)-5的根,于是可以构造一个多项式f(x)-5,再利用因式定理,结合反证法得到证明.

本文链接:http://explodingspec.com/fanli/623.html